Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cancers (Basel) ; 15(1)2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2166268

ABSTRACT

Explainable Artificial Intelligence is a key component of artificially intelligent systems that aim to explain the classification results. The classification results explanation is essential for automatic disease diagnosis in healthcare. The human respiration system is badly affected by different chest pulmonary diseases. Automatic classification and explanation can be used to detect these lung diseases. In this paper, we introduced a CNN-based transfer learning-based approach for automatically explaining pulmonary diseases, i.e., edema, tuberculosis, nodules, and pneumonia from chest radiographs. Among these pulmonary diseases, pneumonia, which COVID-19 causes, is deadly; therefore, radiographs of COVID-19 are used for the explanation task. We used the ResNet50 neural network and trained the network on extensive training with the COVID-CT dataset and the COVIDNet dataset. The interpretable model LIME is used for the explanation of classification results. Lime highlights the input image's important features for generating the classification result. We evaluated the explanation using radiologists' highlighted images and identified that our model highlights and explains the same regions. We achieved improved classification results with our fine-tuned model with an accuracy of 93% and 97%, respectively. The analysis of our results indicates that this research not only improves the classification results but also provides an explanation of pulmonary diseases with advanced deep-learning methods. This research would assist radiologists with automatic disease detection and explanations, which are used to make clinical decisions and assist in diagnosing and treating pulmonary diseases in the early stage.

2.
Heliyon ; 8(6): e09578, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1945080

ABSTRACT

Many countries are suffering from the COVID19 pandemic. The number of confirmed cases, recovered, and deaths are of concern to the countries having a high number of infected patients. Forecasting these parameters is a crucial way to control the spread of the disease and struggle with the pandemic. This study aimed at forecasting the number of cases and deaths in KSA using time-series and well-known statistical forecasting techniques including Exponential Smoothing and Linear Regression. The study is extended to forecast the number of cases in the main countries such that the US, Spain, and Brazil (having a large number of contamination) to validate the proposed models (Drift, SES, Holt, and ETS). The forecast results were validated using four evaluation measures. The results showed that the proposed ETS (resp. Drift) model is efficient to forecast the number of cases (resp. deaths). The comparison study, using the number of cases in KSA, showed that ETS (with RMSE reaching 18.44) outperforms the state-of-the art studies (with RMSE equal to 107.54). The proposed forecasting model can be used as a benchmark to tackle this pandemic in any country.

3.
Discrete Dynamics in Nature & Society ; : 1-7, 2022.
Article in English | Academic Search Complete | ID: covidwho-1874893

ABSTRACT

Background. Cloud-based environment for machine learning plays a vital role in medical imaging analysis and predominantly for the people residing in rural areas where health facilities are insufficient. Diagnosis of COVID-19 based on machine learning with cloud computing act to assist radiologists and support telehealth services for remote diagnostics during this pandemic. Methods. In the proposed computer-aided diagnosis (CAD) system, the balance contrast enhancement technique (BCET) is utilized to enhance the chest X-ray images. Textural and shape-based features are extracted from the preprocessed X-ray images, and the fusion of these features generates the final feature vector. The gain ratio is applied for feature selection to remove insignificant features. An extreme learning machine (ELM) is a neural network modification with a high capability for pattern recognition and classification problems for COVID-19 detection. Results. However, to further improve the accuracy of ELM, we proposed bootstrap aggregated extreme learning machine (BA-ELM). The proposed cloud-based model is evaluated on a benchmark dataset COVID-Xray-5k dataset. We choose 504 (after data augmentation) and 100 images of COVID-19 for training and testing, respectively. Conclusion. Finally, 2000 and 1000 images are selected from the non-COVID-19 category for training and testing. The model achieved an average accuracy of 95.7%. [ FROM AUTHOR] Copyright of Discrete Dynamics in Nature & Society is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
Energies ; 14(19):6414, 2021.
Article in English | MDPI | ID: covidwho-1463604

ABSTRACT

Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.

5.
IT Prof ; 23(4): 57-62, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1378018

ABSTRACT

The novel coronavirus named COVID-19 has quickly spread among humans worldwide, and the situation remains hazardous to the health system. The existence of this virus in the human body is identified through sputum or blood samples. Furthermore, computed tomography (CT) or X-ray has become a significant tool for quick diagnoses. Thus, it is essential to develop an online and real-time computer-aided diagnosis (CAD) approach to support physicians and avoid further spreading of the disease. In this research, a convolutional neural network (CNN) -based Residual neural network (ResNet50) has been employed to detect COVID-19 through chest X-ray images and achieved 98% accuracy. The proposed CAD system will receive the X-ray images from the remote hospitals/healthcare centers and perform diagnostic processes. Furthermore, the proposed CAD system uses advanced load balancer and resilience features to achieve fault tolerance with zero delays and perceives more infected cases during this pandemic.

6.
Microsc Res Tech ; 85(1): 385-397, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1372740

ABSTRACT

The detection of biological RNA from sputum has a comparatively poor positive rate in the initial/early stages of discovering COVID-19, as per the World Health Organization. It has a different morphological structure as compared to healthy images, manifested by computer tomography (CT). COVID-19 diagnosis at an early stage can aid in the timely cure of patients, lowering the mortality rate. In this reported research, three-phase model is proposed for COVID-19 detection. In Phase I, noise is removed from CT images using a denoise convolutional neural network (DnCNN). In the Phase II, the actual lesion region is segmented from the enhanced CT images by using deeplabv3 and ResNet-18. In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE) deep learning model having two stack auto-encoders (SAE) with the selected hidden layers. The designed SSAE model is based on both SAE and softmax layers for COVID19 classification. The proposed method is evaluated on actual patient data of Pakistan Ordinance Factories and other public benchmark data sets with different scanners/mediums. The proposed method achieved global segmentation accuracy of 0.96 and 0.97 for classification.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Neural Networks, Computer , SARS-CoV-2 , Tomography, X-Ray Computed
7.
IT Prof ; 23(3): 63-68, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1281961

ABSTRACT

Currently, the world faces a novel coronavirus disease 2019 (COVID-19) challenge and infected cases are increasing exponentially. COVID-19 is a disease that has been reported by the WHO in March 2020, caused by a virus called the SARS-CoV-2. As of 10 March 2021, more than 150 million people were infected and 3v million died. Researchers strive to find out about the virus and recommend effective actions. An unprecedented increase in pathogens is happening and a major attempt is being made to tackle the epidemic. This article presents deep learning-based COVID-19 detection using CT and X-ray images and data analytics on its spread worldwide. This article's research structure builds on a recent analysis of the COVID-19 data and prospective research to systematize current resources, help the researchers, practitioners by using in-depth learning methodologies to build solutions for the COVID-19 pandemic.

8.
Microsc Res Tech ; 84(10): 2254-2267, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1218903

ABSTRACT

Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand-crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U-Net deep learning model. The hand-crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand-crafted features (ii) classification using fusion of hand-crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand-crafted & deep microscopic feature's fusion provide better results compared to only hand-crafted fused features.


Subject(s)
COVID-19 , Humans , Intelligence , Neural Networks, Computer , SARS-CoV-2
9.
Environ Technol Innov ; 22: 101531, 2021 May.
Article in English | MEDLINE | ID: covidwho-1163764

ABSTRACT

This research presents a reverse engineering approach to discover the patterns and evolution behavior of SARS-CoV-2 using AI and big data. Accordingly, we have studied five viral families (Orthomyxoviridae, Retroviridae, Filoviridae, Flaviviridae, and Coronaviridae) that happened in the era of the past one hundred years. To capture the similarities, common characteristics, and evolution behavior for prediction concerning SARS-CoV-2. And how reverse engineering using Artificial intelligence (AI) and big data is efficient and provides wide horizons. The results show that SARS-CoV-2 shares the same highest active amino acids (S, L, and T) with the mentioned viral families. As known, that affects the building function of the proteins. We have also devised a mathematical formula representing how we calculate the evolution difference percentage between each virus concerning its phylogenic tree. It shows that SARS-CoV-2 has fast mutation evolution concerning its time of arising. Artificial Intelligence (AI) is used to predict the next evolved instance of SARS-CoV-2 by utilizing the phylogenic tree data as a corpus using Long Short-term Memory (LSTM). This paper has shown the evolved viral instance prediction process on ORF7a protein from SARS-CoV-2 as the first stage to predict the complete mutant virus. Finally, in this research, we have focused on analyzing the virus to its primary factors by reverse engineering using AI and big data to understand the viral similarities, patterns, and evolution behavior to predict future viral mutations of the virus artificially in a systematic and logical way.

10.
Microsc Res Tech ; 84(7): 1462-1474, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1055920

ABSTRACT

COVID-19 has impacted the world in many ways, including loss of lives, economic downturn and social isolation. COVID-19 was emerged due to the SARS-CoV-2 that is highly infectious pandemic. Every country tried to control the COVID-19 spread by imposing different types of lockdowns. Therefore, there is an urgent need to forecast the daily confirmed infected cases and deaths in different types of lockdown to select the most appropriate lockdown strategies to control the intensity of this pandemic and reduce the burden in hospitals. Currently are imposed three types of lockdown (partial, herd, complete) in different countries. In this study, three countries from every type of lockdown were studied by applying time-series and machine learning models, named as random forests, K-nearest neighbors, SVM, decision trees (DTs), polynomial regression, Holt winter, ARIMA, and SARIMA to forecast daily confirm infected cases and deaths due to COVID-19. The models' accuracy and effectiveness were evaluated by error based on three performance criteria. Actually, a single forecasting model could not capture all data sets' trends due to the varying nature of data sets and lockdown types. Three top-ranked models were used to predict the confirmed infected cases and deaths, the outperformed models were also adopted for the out-of-sample prediction and obtained very close results to the actual values of cumulative infected cases and deaths due to COVID-19. This study has proposed the auspicious models for forecasting and the best lockdown strategy to mitigate the causalities of COVID-19.


Subject(s)
COVID-19/mortality , COVID-19/transmission , Communicable Disease Control/statistics & numerical data , Machine Learning , COVID-19/epidemiology , Humans , Pandemics , Physical Distancing , Quarantine , SARS-CoV-2
11.
Comput Electr Eng ; 90: 106960, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002458

ABSTRACT

In this work, we propose a deep learning framework for the classification of COVID-19 pneumonia infection from normal chest CT scans. In this regard, a 15-layered convolutional neural network architecture is developed which extracts deep features from the selected image samples - collected from the Radiopeadia. Deep features are collected from two different layers, global average pool and fully connected layers, which are later combined using the max-layer detail (MLD) approach. Subsequently, a Correntropy technique is embedded in the main design to select the most discriminant features from the pool of features. One-class kernel extreme learning machine classifier is utilized for the final classification to achieving an average accuracy of 95.1%, and the sensitivity, specificity & precision rate of 95.1%, 95%, & 94% respectively. To further verify our claims, detailed statistical analyses based on standard error mean (SEM) is also provided, which proves the effectiveness of our proposed prediction design.

SELECTION OF CITATIONS
SEARCH DETAIL